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1. INTRODUCTION

Research in modern control theory has recently turned its attention from
systems for which well defined and well understood models are available (such
as the aerospace field) to socio-economic systems for which even the best
models are only uncertain approximations to a real world that defies descrip-
tion. 1In addition, most socio-economic models are inherently infinite dimen-
sional, and involve information accumulation from geographic areas large
enough to make the cost of information transfer an important consideration.
The problems presented by these systems are often dependent on the individual

system with which one is working, and thus are difficult to solve generically.

Research is currently being done in the Electronic Systems Laboratory on
the control of a freeway corridor. A freeway corridor is considered to be a
system of parallel freeways and arterials connecting two locations. Freeway
corridors typically connect suburban areas with a central business district
in a nearby city. An individual motorist is assumed to be indifferent to the
particular route used to travel between the two locations. Although most of
the theory of modern control is applicable to this problem, the additional
difficulties of a large dimensional system and information cost are presented

and must be dealt with.

The advantages of an effective control system for a freeway corridor are
numerous. Possibly, the most important inprovement may be the increase in
effective capacity of existing freeway networks. In the past several years,
new construction of freeways hai not kept pace with the increase in demand for
their use. This is especially true around large cities such as Los Angeles,
Dallas, and New York. The result has been an increase in the number and dura-
tion of traffic jams on the main freeways, especially during rush-hour periods.
Yet during the times that the main freeways are congested, there are often
lower-capacity parallel arterials on which traffic is moving freely. The
traffic control system may allow motorists to use the full capacity of the

entire network, and not just that of the main freeway.

An effective control system may provide benefits to everyone using the
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corridor. The average travel time for a motorist and the associated energy
consumption may be reduced. Because the disruption of traffic flow as a
result of accidents and normal rush-hour congestion may be minimized, the
total gasoline consumption may be reduced, an important consideration today.
Finally, the need for new roads may be reduced if the capacity of existing

networks are fully used.

Models that have been developed for freeways can be placed in two cate-
gories: microscopic or macroscopic. Most of the microscopic models try to
explain traffic phenomena by studying individual vehicles and their reactions
to changes in speed of the vehicles ahead. This car-following literature has
been well documented (Gazis et al. [1959] and Newell [1961]), but is difficult

to use in the context of modern control theory.

More useful models for this purpose are the macroscopic models developed
from an analogy to compressible gases. This analogy has been developed by
Lighthill and Whitham [1955]. Greenberg [1959] has considered a specific
form in which drivers accelerate proportional to the density gradient on the
freeway. Isaksen and Payne [1972] have developed a similar model. The advan-
tage of the macroscopic models is that these models use average flow rates,
velocities, and densities, which are much easier to measure and track than

the statistics of an individual wvehicle.

Theoretically, once an appropriate state-space model has been developed
for a freeway corridor, all the tools of modern control theory can be used to
study and solve the problem. In particular, the Linear-Quadratic-Gaussian
(i.QG) regulator approach as summarized by Athans [1971] can be applied.
Isaksen [1971] has presented an appropriate finite-dimensional model, and has
used the model to derive traffic-responsive deterministic controls for a Los
Angeles freeway. A complete non-deterministic control algorithm using the

I1)G regulator approach is given in Section 2.

Once the centralized control algorithm has been developed, consideration
must be given to implementation problems associated with a large-scale system.
These problems include numerical computation problems associated with finite-

word length, and the cost of information transfer.



The numerical computation problems are a result of the large number of
states needed to approximate an infinite~dimensional system for any reasonable
freeway-network topology. For example, consider a 5-mile freeway-corridor
system with the following topology:

a) ten, 1/2-mile freeway sections (links),

b) ten arterial links, and

c) six exit-~and-entrance ramps.
With two state variables needed for each freeway and arterial link, and one
state variable for each ramp, the total number of states for the system is 46.
Solution of the noiseless centralized control problem with a linearized model
involves a 46th-order Ricatti equation. If an estimator with identification
of 1 parameter per link is included, the dimension of the estimator is 66,

and the problem can quickly become intractable for on-line computation.

Assuming the computational difficulties can be solved, there is still the
problem that measurements on the freeway-corridor system are made at points
all along the length of the corridor. For a centralized controller to be
effective, these measurements must be transmitted on the central processor,
and the control must be transmitted back to the individual locations where they
are to be implemented. To accomplish this information transfer, some form of
communication channel (typically a rented telephone cable, or a private radio
frequency) must be maintained. The cost of these channels can often be pro-
hibitive.

The noise that is present in the communication channels will affect the
performance of the controller. This imposes an additional cost on the control
system since the control will not be as effective, and must be taken into

account when designing the controller.

The usual approach to solving the problems stated above is to implement
a decentralized suboptimal controller using the properties of the system in
the design of the controller. Very little has been done in the way of research
of the generic decentralized control problem. Witsenhausen [1968] and Chong
[1970] have shown that controls for a decentralized system do not in general
obey a separation theorem when the controllers have different information

patterns. Carpenter [1972] has solved (in principle) the two controller
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linear quadratic Gaussian problem with linear feedback and several noisy infor-
mation patterns. Chong and Athans [1975] have demonstrated some sufficient
conditions for the decomposition of a decentralized control problem into a
two-level hierarchical minimization problem. A rather complete survey of de-

centralized methods can be found in Sandell, Varaiya and Athans [1975].

The problem of decentralized control of a freeway has hardly been con-
sidered. Thompson, Payne and Isaksen [1972] have used full-state feedback and
a deterministic model to simulate decentralized control of a segment of the
lHollywood freeway in Los Angeles. Houpt [1974] has developed a simplified
finite-state model for a freeway corridor, and has demonstrated the diffi—
culties associated with real-time decentralized feedback control. Except for
the ad-hoc deterministic approach suggested by Isaksen and Payne [1972], there
are virtually no stochastic decentralized control schemes which are both

systematic in approach and practically feasible to implement.

This report will attempt to develop and apply a complete decentralized
control algorithm for the freeway-corridor problem using the Isaksen-Payne
model. The approach that will be taken is a parameterization of the infinite-
time LQG regulator problem. The problem can be reformulated as a static mini-

nmization constrained by a Lyapunov matrix equation (see Appendix A).

Section 3 presents this approach and develops a method of solution for
the static-minimization problem. Several problems are encountered in applying
the solution. One of the most important is the difficulty of solving the
Lyapunov equation for large systems (see Hagander [1972] for a survey of
methods for the solution of this equation). Another important problem is the
initial choice for the parameterization. Certain parameterizations admit non-
mmique solutions. This problem is closely related to the work done by Glover

[1973] on identification.

The parameterization method for the design of decentralized control sys-
tems is then applied to a sample freeway—-corridor system in Section 4. The
results are compared with the results of the centralized control system which
is developed in Section 2. It is found that the decentralized design works

1lmost as well as the centralized control system.



The main contribution of this report is the development of a systematic
method for the design of decentralized control systems which can be applied to

practical problems.




2. CENTRALIZED CONTROLLER

2.1 Introduction

Although the ultimate objective of this report is to develop a decentra-
lized control system, the design of a centralized controller is important for
two reasons:

a) The centralized controller can give insights into the behavior
and structure of the system. These insights will be invaluable when the

design of the decentralized controller is attempted.

b) The centralized solution gives us a standard to which we can

compare the decentralized controller.

This section will be concerned with the development of a centralized
control system. The method of design is essentially the LOG regulator approac
as summarized by Athans [1971]. Section 2.2 will present the model equations
for the freeway corridor. Section 2.3 will discuss briefly the LQG regulator
approach, and present the linearized equations. The final design of the cen-

tralized controller will be summarized and evaluated in section 2.4.

2.2 Freeway—-Corridor Model

This section will present and briefly discuss the model equations that wi
be used for the freeway corridor. A more detailed discussion can be found in

Isaksen and Payne [1972].

The system to be controlled is a freeway corridor consisting of a freeway
and several parallel arterials. The model for both the freeway and arterials
will be the model developed by Isaksen and Payne [1972] with modifications

to the beginning and ending links of the corridor.

Each roadway (freeway or arterial) is sectioned into links, with the
iength of the individual links determined by the topography of the corridor.
‘“he state variables are the spatial aggregate density (vehicles/hour) of the
ehicles on each link (see figure 2.1 for the interpretation of aggregates).

'"he equations for the ith link of the jth roadway are (see figure 2.2):



LANE

SPEED

(MILES/
HOUR)

V(Z,'o)

/Approximotidn

DENSITY

(VEHICLES/
MILE/LANE)

P(Z,to)

Approximation

Pi-

 +1

Z4

Figure ..

j-1

j+1

Ziy2

INTERPRETATION OF AGGREGATE VARIABLES




STIGYTEVA AVMITEI 40 NOILINIIZT T'T aanbta

C .
2 (37 A _ 2o (ma (1y/ysA) “OT3 .
v - (durex 33o) HUTITXD = (3'2)'m
T+(,
{ 3utt
c uo (Iy/usa) #oT13 c
Z o (durex uo) buraslud = (3’z) 'n
Zp S.uv.na _ . Svﬁa
c Ty - ( uor3oes uo z sod 3e c
T2 (ay/Tw) peads ysa = (3’z) A
( uot3des uo 2 sod 23e C
c 1 c (Tw/ysa) A3TSUSP UdA = (3'2)°d
w (1'2)70 % qF@e
Iy + 2 ( uoT3d9s uo 2 sod 3e C
(Tu/yea) mOTF UysA = (3'2)°0
_.nN la+.hN = .nN< oy + 3 ‘3] 33 : SATEVIUYA o NYEH. NOILOIS : gITEVINYA WAANIINOD
- -
TR .
b+ b+l " _
y/a |
| ol |
_ a3ads = (42)°A |
<t— “— ALISN3G= (4°2) _mJl - <+— -—
(b1 mona= ¢ -l 2-l¢
\““m e ————— -
b+ 1 -
1+ NOILO3S 21 [NOWD3S 7| [ NOILO3S 2
__ | N
NOILISOd «—



a i PiPia Via o TV
at "i i _.3 io_ 3"
Zie1 ™% Zie17%
J_J i o_3
I S N SR N I I I 1Y Y ! Pis17P
at i i, zj _zj T| i ei i T pj % zj _Zj
Vit % i i+27%
(2.2.1)
The equation for the initial links are:
3 J_g3 .
a j P1V1~fin 1™
== p: = - ra— + > : ’
at "i o 23,7
2 71 271
j_.J
. P . P5—pP
L= e e i B S R RV B 21
a& 17 7T |1 (P1 T |5 T735 3 (2.2.2)
P1d | %2372
The equations for the last link are:
s T B i_3
43 AT N-1fva P
at °n 23 _3 I I
N+1 °N N+1 °N
A
a J_ 3 N N-1 B 3
& N vy 5 3 T | Yn Ven |Px (2.2.3)
2 | Z -Z
N+1 "N-1
where: pg = spatial average density on the ith link of roadway
j (veh/mi),
vg = spatial average velocity on the ith link of roadway
j(mi/hr)r
zg = distance to the beginning of link i of roadway
j (miles),
rg Z on-ramp flow rate to link i of roadway j (veh/hr),

N




Remark 1:

Remark 2:

Remark 3:

Remark 4:

‘emark 5:

ltemark 6

£
i

Cde

i off-ramp flow rate from link i of roadway
j (veh/hr),
T = driver reaction time constant (hours),
V = driver reaction sensitivity coefficient (miz/hr),
finE input flow to roadway j (veh/hr),
inE desired velocity curve for link i of roadway j,

N = number of links of roadway j.

The model as stated above does not yet include noise. The effects
of uncertainty will be considered later.

Both the freeway and the arterials will use this model. While
this excludes corridors in which the arterials have many closely
spaced signalized intersections, it appears to be a good approxi-
mation for situations in which the traffic signals are far apart,
or when one lane of a freeway is used as a reversible link. The
latter situation can occur, for example, when an outbound lane of
a freeway is used for inbound traffic on the freeway during the
morning rush hour.

The on-and-off ramp flow rates will be paired as the topography

of the freeway corridor requires.

The density equations of (2.2.1) to (2.2.3) are derived from the
"conservation of vehicles" principle; i.e., we assume all vehicles
enter or leave a section either endogenously from other links or
exogenously from on-and-off ramps.

The velocity equations of (2.2.1) to (2.2.3) are derived from
several sources to approximate driver behavior. These are explain
more fully in Isakscn and Payne [1972].

The differences in the equations for the first and last links aris:

from the fact that vg is not available for the velocity equation

for the first links, and p§+1 is not available for the velocity
equation of the last links. Instead, it is assumed that:
_ j o o
0~ V1+ Py~ Py
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2.3 Centralized Solution

The main objective of a control system for a freeway corridor must be to
move traffic through the corridor to minimize (or maximize) an appropriate
performance index. The performance index is typically a measure of goodness,

such as total average travel time through the corridor.

If we assume that the input flow is constant over a relatively long period
of time, and that there are no noise sources, the dynamics of the corridor
(equations (2.2.1) to (2.2.3)) reach a steady state in which the time deriva-
tives are negligible. We first rewrite equations (2.2.1) to (2.2.3) using

vector notation:

x(t) = ¢lx(t), u(t), £.1 (2.3.1)

where: x(t) = [pi(t)svi(t)fpi(t)so.ogpg(t)svﬁ(t)]' '
u(t) = (5w (il re®ivE@®1"

£ = [f} seeed £ 1'
in

* —in

$(*,*) = vector of functions of the right-hand sides of

equations (2.2.1) to (2.2.3),

L = number of roadways in the corridor.
The steady-state equations are then:
0= ¢I[xuf 1. (2.3.2)

We can now formulate that static optimization problem for the freeway

corridor (see Gershwin [1975] for a more detailed presentation of the problem).

Static Optimization Problem:

minimize J(w) = &[x, ul ,

subject to 0

$lx, v, £. 1,




where % (*,*) = performance index.

The solution of this problem gives a steady-state operating point (Ed'Ed)
for a particular value of Ein'l We now relax the assumption that the input
flow is constant to the assumption that the time average of the input flow
remains constant. We can still use the results of the static optimization
problem, but the commanded input Ed must be modified to take into account the
time variations of the system. Thus, we must choose a perturbational or
corrective control u(t) to keep the system "near" the nominal static operatin

point, defined by and u..

%a %)
To help us choose the control law, we will use the LQG approach. First,
ecxpand equation (2.3.1) in an exact Taylor series:

3
(xy *+ Ox(0)) - ¢lo + ey |0 Bx (t)

7|

99 l
+~5—u——(t—) o 6\_1_(1:) +9_(||6£(t)|!) ’ (2.3.:
where:  x(t) = x, + 8x(t) ,
u(t) = u, + Sult) ,
fo = ti ve of £. (t)
£;, F time average £n ’
X4 = nominal state from static assignment algorithm,
Yy = nominal control from static assignment algorithm,
0
89_ ag[’_‘_(t) l_‘l(t) l_f_in]
t =
ax(t) o ox (t) x(t) = %,
u(t) = u, .,

tH

the matrix of partial derivatives where the i, jth

element is:

-12-



20,

; evaluated at the nominal state and control .

ng (t)
(}_{dr l_ld) v
0
9 99 [x(t) ,u(t) £, )
u(t) - du(t)
° x(t) = x,
u(t) =u, ,

the matrix of partial derivative where the i, jth

element is:

5,

W ; evaluated at the nominal state and control.
-_i
Q(l | 6x(t) | I) = vector function of x and u such that
Lim _q(l |8x(t) | I)
+0 .

Equation (2.2.3) is an exact expression for equation (2.3.1). If ”’SEH is
small enough, equation (2.3.3), and hence, equation (2.3.1) can be very well

approximated by the linear equation:

Sx(t) = 1_;065(1;) + Eoéy_(t) i . (2.3.4)
where:
3¢
-&0 = ai(t) ) (constant matrix),
9
9-0 = W o (constant matrix),

-13-



since:

d
X~
£f(xg, uy) =0 (from the constraint for choosing x.., u,), (2.3.5)

o(l |63¢_||) << A Sx(t) + B du(t).

The last equation of (2.3.5) is actually a precise statement of what is
meant by."small enough". One of the objectives of the LQG controller must be
to insure that this relation holds. One way to accomplish this objective is

to formulate the problem as a constrained minimization, i.e.:

Problem Statement 2.l:

minimize J = &(8x(t), Su(t)),

subject to 6x(t) - ﬁoégﬂt) + godgjt).

Here, the cost J is used to reflect the size of 0(||6§jt)||). One possible
cost which may be used is:

T

3= Limf 0 (I |53£(t>||) at. (2.3.6)

T 0

This, however, means that 0(||6§jt)|0 must be available. Again, we can resort
to an approximation. The terms in O ||6§jt)|| are all quadratic or higher-
order terms. If the quadratic terms can be made small (relative to the linear
terms), the higher-order terms will be even smaller. Thus, it may seem appro-
priate to use a quadratic cost criterion of the form:

T

J = Limf [8x' ()8, 6x(t) + Su' (t) s u(t)lat, (2.3.7)
T 0 g

where the matrices §1 and §2 can be chosen to reflect the largest unexpected
effect of the term O “|6§jt)||).
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The problem can then be stated:

Deterministic Linear Regulator Problem:

T

minimize J = Lim/ [6x'(t)S,8x(t) + Su'(t)Sydu(t)lat ,
T 0

subject to 6'5(1:) = A 0x(t) + B Sult) ,

where: §1 is positive semi-definite,

§2 is positive definite.

In the deterministic case when all the states are observed, the solution

to the above problem is well known. The feedback law is linear:

Su(t) = —_G_&Sg(t) , (2.3.8)

where go is calculated from the matrix algebraic Ricatti equation:

- s +KBS B,

2= Bo 73 Y EE3 20

=A'K -
AR -K

G

= - L
G, = S, BK - (2.3.9)

When the presence of uncertainty is admitted to the model, the problem

becomes more difficult. The model then becomes:

x(t) - $Ix(8), ult), £ (&), £ (0] , (2.3.10)
where: §c(t) = zero-mean stochastic process (generally non-white).
We also assume a non-linear observation equation:

_y_(t) = clx(t), B_(t)] (2.3.11)
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where: $1*,°,*,*] = right-hand side of equations (2.2.1) to (2.2.3).

appropriately modified to include noise disturbances,

cl*,°] appropriate measurement function to be specifically -

determined according to the type of sensor used,

Qc(t) zero-mean stochastic process (generally non-white).
Equations (2.3.10) and (2.3.11) provide a complex stochastic model for
the freeway-corridor system. as in the deterministic case, we assume the time
average of the input flow zgn remains constant for a sufficiently long time.
The solution to the static assignment problem is computed, and deviations from
the static solution are assumed to be small. Equations (2.3.10) and (2.3.11)

are expanded in a Taylor series:

3¢
a ?
at Xt x(0)1 = ¢ ¢+ (e 8x(t)
0 0
3% 3 =
+ -aj(T:)- Gll_(t) + W _E_(t)
° X
u,
+ 2[||53_¢.(t)||] , (2.3.12)
c
Y, + Sy(t) = EI + 3—1!__(—1:5 Ax (t)
0 0
dc x
ta_m| A8 2[||5£(t)||] , (2.3.13)
0

where the notation is the same as for equation (2.3.3).

Again, the effects of the O[||6§jt)||] texms are neglected, and the lin-

earized system results:
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8x(t)

5063_(1;) + EOGB(t) + E(t) ,

Sy(t) = ani(t) + 0(t) , (2.3.14)
where: éo, EO' Xg0 Uy as defined in equation (2.3.4),

6x(t) = x(t) - x. .,
Su(t) = u(t) - By v
Sy(t) = y(t) -y, »
de[x(t),8 (t)]
go = (constant matrix),
ox(t)
Xq
u,
E(t) = normalized stochastic process from equation (2.3.12),

a(t)

normalized stochastic process from equation (2.3.13).

We assume that £(t) and 0(t) are zero-mean Gaussian white noise processes with
covariances:

E{E()E'(T)} = Q8(t-T) ; Q@2>0,
E{6(£)6'(T) =RS(t-) ; R>0, (2.3.15)
E{e()E' () =0,

such that (A, /Q)* is controllable.

We can now state the LQG regulator problem.

*

/O is defined by the relation: vQ' vQ

ne>

Q.
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LOG Regulator Problem:

Consider the linear-time invariant system:

Sx(£) = A 0x(t) + B Su(t) + E(t),

Sy (t) S 8x(t) + 8(t) , (2.3.16)

with £(t) and 6(t) zero-mean gaussian white noise processes with covariances

given by (2.3.15). Choose the control law:
Su(t) = YISy(t)] ,

to minimize the quadratic cost criterion:

T
J(Su(t)) = Lim E %—f [6x' (t)_S_lts_:i(t) + Su' (t)§_26l_1_(t)]dt .
T 0

The solution to the LQG regulator problem is well known, and can be
divided into two parts (via the separation principle). The optimal control

law is given by a linear feedback of the optimal estimate of the state:

Sux(t) = —goﬁgf(t) ’ (2.3.17)
where: Su*(t) = optimal control,

§X*(t) = optimal estimate of Sx(t),

EO = feedback control gain matrix.

The feedback gain EO is the same as the gain in the deterministic case, and is

calculated from the algebraic matrix Ricatti equation (2.3.9).

The optimal estimate is given by the linear Kalman filter:
* = % Nk - I (2.3.18)
62*(t) = A 0x*(t) + B, St*(t) + go[c‘iy_(t) 906_:_:_*(1;)] .

The Kalman gain matrix go is also calculated from the algebraic matrix Ricatti
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equation:

-1
= 1 . '
] §0§+§é0+2 23_905 EOEr
H =3I C'R YT (2.3.19)
-0 ===

It is worthwhile to review the principles underlying the solution. We
Yeplaced the original non-linear problem with a simpler linear problem for
which we knew the optimal solution. However, this solution is not optimal for
the original problem. Yet, it may be close if the assumptions of "smallness"

of the perturbations are accurate.

To hedge against the possibility that the assumption may not be entirely
true, we will modify the estimator equations while still keeping their basic
form. The result will be an extended Kalman filter (see Jazwinski [1970] for
details).

We first note the structure of the linear Kalman filter (equations
(2.3.18) and (2.3.19)). The right-hand side of equation (2.3.18) consists of
two parts. The first part is the same as the linearized system dynamics (see
equation (2.3.14)). Since the linearized system dynamics are used only to
approximate the actual system behavior under small perturbation, propagating

the actual non-linear system dynamics typically results in an improved filter.

The second part of the right-hand side is the optimal feedback of the
difference between the actual observation and the expected observation. The

feedback gain is chosen by letting the matrix Ricatti differential equation:

d , _ -1
g Z(t) - AL(t) + Z(0)Al +Q L(£)CIR "C Z(t) , (2.3.20)

reach steady state. This Ricatti equation is actually the steady~state co-

variance of the linearized system (i.e., L(t) = E{[x(t) - &(t)1[x(t) - R(t)1'} .

Again, we will keep the same form (feedback of the difference between the
observation and the expected observation) for the second part, by the gain will

be chosen differently. Rather than using the initial linearized approximations
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50 and 90 for all time, one updates the linearization with each new estimate
obtained. Assuming that the estimate g_is more likely to be close to the

state than the static operating point Xy this relinearization procedure typi-

cally results in a smaller error covariance.

Implementing these two modifications, and assuming that the measurements
are made at discrete times rather than continuously, the filter equations can

be written: (see, e.g., Jazwinski [1970], p. 278)

SR(m) = R(T|T) - X, , (2.3.21)
:_:E_(tl'l‘) = ¢[R(t|D), u(t), 0) T<t<T + A , (2.3.22)
R(T+A|T+8) = R(T+A|T) + H(T+A) [y(t) - c(R(T+A|T), O)] , (2.3.23)
H(T+A) = Z(T+A|T)C'[C & (T+A|T)C' + RIS, (2.3.24)
L(r+A|m) = o(r+A|TIE(T|T) @ (4T + @ , (2.3.25)
L(T+A|T+8) = [I - _}_I_(T+A)§]_Z_(T+A|T), (2.3.26)

3Ix(t) ,ult) E(t)]

ot =
ox(t) (bt T)  T<E<THA
f(t|T)
u(t)
g(t) =0, (2.3.27)
$rm =1, (2.3.28)
where: £(t|s) = estimate of state at time t given the observations up

to time s,

>
(1}

£ period between observations,
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equation:

=L R . (2.3.19)

It is worthwhile to review the principles underlying the solution. We
replaced the original non-linear problem with a simpler linear problem for
which we knew the optimal solution. However, this solution is not optimal for
the origiﬁal problem. Yet, it may be close if the assumptions of "smallness"

of the perturbations are accurate.

To hedge against the possibility that the assumption may not be entirely
true, we will modify the estimator equations while still keeping their basic
form. The result will be an extended Kalman filter (see Jazwinski [1970] for

details).

We first note the structure of the linear Kalman filter (equations
(2.3.18) and (2.3.19)). The right-hand side of equation (2.3.18) consists of
two parts. The first part is the same as the linearized system dynamics (see
equation (2.3.14)). Since the linearized system dynamics are used only to
approximate the actual system behavior under small perturbation, propagating

the actual non-linear system dynamics typically results in an improved filter.

The second part of the right-hand side is the optimal feedback of the
difference between the actual observation and the expected observation. The

feedback gain is chosen by letting the matrix Ricatti differential equation:

IQa

T - ] -1
L(t) - AL(t) + I(£)Ag + Q LR "c L) , (2.3.20)

Qu

t
reach steady state. This Ricatti equation is actually the steady-state co-
variance of the linearized system (i.e., Z(t) = {Ix(t) - R(E)1Ix(t) - R()1'hH.

Again, we will keep the same form (feedback of the difference between the
‘observation and the expected observation) for the second part, by the gain will

be chosen differently. Rather than using the initial linearized approximations
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50 and 90 for all time, one updates the linearization with each new estimate

obtained.

state than the static operating point Xqr this relinearization procedure typi-

Assuming that the estimate g_is more likely to be close to the

cally results in a smaller error covariance.

Implementing these two modifications, and assuming that the measurements

are made at discrete times rather than continuocusly, the filter equations can

be written: (see, e.g., Jazwinski {19701, p. 278)

where:

SR(T) = R(T|D) - x (2.3.21)
Zt|m = gIR(t|m), ult), 01 T<L<T + A, (2.3.22)
R(T+A|T+A) = R(T+A]T) + H(THA) [y (t) - c(R(T+0]|T), 0)] (2.3.23)
H(T+A) = D(T+A|T)C'[C L (T+A|TIC' + RITY, (2.3.24)
IL(r+A|T) = Q(T+A D) I (7|T) & (T+A|T) + @ , (2.3.25)
L(T+A|T+A) = [I - H(T+A)CIT (T+A|7) (2.3.26)
B 8 Ix(t) ,ult) E(t)]
I eefm =
3% (t) (e 1)

Rielm

(k)

o) = 0, (2.3.27)
rm =1, (2.3.28)
g(t|s) Z estimate of state at time t ugiven the <bservations up

to time g,

A = period between observations,
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oc[x(t),0(t)]

c=
9x(t)
x(T+4) | T)

8(t) =0 .

Remark l: Equation (2.3.22) is the non-linear propagation of the estimate.

Remark 2: Equation (2.3.23) is the update equation, and is used whenever a
measurement is made. It takes the form of the feedback of the
difference between the actual observation and the expected observa-

tion (the innovations process).

Remark 3: Equations (2.3.24) to (2.3.26) are the discrete version of the
error covariance propagation using the approximation to the transi-
tion matrix. The discrete version is used because the measurements
are now assumed to come at discrete intervals, the situation in

actual practice.

Remark 4: The transition matrix is approximated by equations (2.3.27) and
(2.3.28).

Remark 5: The input is still given by a linear feedback of the estimated
perturbation 6x(t) (as in equation (2.3.17)). The gain is the same

as in the deterministic case.

‘The complete algorithm for the centralized controller is now given.
Figure (2.3) gives a flow-chart description of the algorithm, while Figure (2.4)

is a block diagram of the controller.

Centralized Control Algorithm:

(a) Solve the static optimization problem for the static operating point

).

(édl Ed

(b) Solve the matrix algebraic Ricatti equation (2.3.9) for the feedback
gain EO'

(c) Start the extended Kalman filter (by integrating equations (2.3.22)
and (2.3.27) from either:
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EXTERNAL DISTURBANCES
(E.G. ACCIDENTS)

DYNAMIC
CONTROLS |
K FREEWAY CORRIDOR SYSTEM
é STATE VARIABLES
SENSORS
e ' 1 REAL TIME MEASUREMENTS

ESTIMATION/DETECTION SYSTEM

Estimates state variables, parameters, O SU!!RVEILLANCE
most probable operating conditions,
locates accidents

,. OPERATING CONDITIONIS
%; PARAMETER ESTIMATES
3] STATE VARIABLE ESTIMATES
|

DETERMINISTIC OPTIMIZATION
Calculates optimal steady-state
flows; establishes desire!reference
values

*‘ § STATE AND CONTROL

} REFERENCE VALUES
ﬁi‘ DYNAMIC (LQG ) FEEDBACK
PERTURBATION CONTROLLER

DY NAMIC CONTROL
PERTURBATIONS

Figure 2.3 CONTROL ALGORITHM FLOW CHART
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T

1) The last updated estimate,
2) some initial guess if this is the first time through the step.
(d) Take a measurement of the system.

(e) " Update the extended Kalman filter by ejuations (2.3.23) through
(2.3.26).

(£) Set u(t) = u, - G O6X(T), T<t<T+A,
(g) Repeat step (c).
We conclude this section with two comments:

(a) Throughout the section we have made the assumptions that the pertur-
bations are "small", in the sense that the second-order effects of the non-
linear system are negligible compared with the linear terms. We shall see in
the next section that the controller works well even when the second-order

effects are not small. The reasons will be discussed in section 2.4.

(b) The material ir this section has been superficially discussed. Some
references have been given throughout the section for more detailed derivations.

For convenience, these are repeated below:
1) LINEAR QUADRATIC GAUSSIAN PROBLEM: Athans [1971].
2) STATIC ASSIGNMENT: Gershwin [1975].
3) EXTENDED KALMAN FILTERING: Jazwinski [1970], Orlhac et al

{1975] (application to freeway corridor.

2.4 Centralized Control Example

Now that the centralized control system for the frce‘aylcorridor has bheen
designed, it must be tested on a practical problem. We will use a simple but
reasonable nontrivial freeway corridor example to observe the behavior of the
system. In most cases throughout this example, the effect of the behavior of.
the extended Kalman filter is minimized since it is coverced in grecat detail

by Orlhac et al [1975].

The actual corridor that we will use s shcwr in Fioure f2.5). The corri

dor consists of two freeways, each divided into three homc gonecus links. Each
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link is 1/2-mile long. The main freeway (freeway A in figure 2.5) has a maxi-
mum flow capacity of approximately 6220 vehicles/hour. The secondary freeway
(freeway B in figure 2.5) has a maximum flow capacity of approximately 2075

vehicles/hour.

The available controls are two on-and-off ramp pairs connecting the be-
ginning of links 3 and 4, and links 5 and 6. The commanded control is the

percentage of flow that remains on each freeway past these points. Let:

¢i = flow on link i,
Yy Z ramp flow from link 3 to link 4,
wl = ramp flow from link 4 to link 3.

Then, if Yl > wl:

(2.4.1)

However, if wl > Yl:

_ W

ul ——$;— - (2.4.2)

The second control is defined analogously with ¢l and ¢2 replaced by ¢3

and ¢4, respectively.

The models used for each freeway are the models presented in section 2.2.

The variable T and V are taken to be:

T

5.0 sec ,
(2.4.3)
9.375 miz/hr.

\Y

These values produce a faster driver-reaction time and faster disturbance pro-
pagation than actually is observed, but the gualitative behavior remains the

same. The desired velocity curve is a modified exponential as in figure (2.6).
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The values pmax' pB, and v0 for the main freeway are:

%wx = 675 vehicles/mile,
pB = 75 vehicles/mile, (2.4.4)
vO = 55 miles/hour.

The values for the secondary freeway are:

pmax = 225 vehicles/mile,
pB = 25 vehicles/mile, (2.4.5)
vo = 55 miles/hour.

These values correspond approximately to a 3-lane road for the main freeway and

a 1-lane road for the secondary freeway.

The input flow to the corridor is modeled as a colored poisson process;
i.e., a process with independent arrivals that is filtered to make the second
moment independent from the mean. In this manner, we can control the level
of "noise" in the input flow. The other noise sources are introduced through
the controls. The controls are taken to be uniformly distributed with the
commanded value as the mean. The limits of the distribution are + 10 percent
of the commanded value. Thus, all the system-noise sources are additive, and

affect only the density equations.

The measurements available from the system are assumed to be linear
measurements of the densities on all six links. The measurements are corrupted

by zero-mean Gaussian white noise processes.

To choose the appropriate weighting matrices §1 and §2 for the feedback
gain computation, we will use a method proposed by Bryson and Ho [1969]}. The
idea is to select the quadratic performance index by establishing the maximum
desired deviations of the state variables and controls from their nominal

value, and using the maximum deviations to scale the corresponding values in
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the weighting matrices. Since we will be using diagonal matrices for §1 and

§2, the cost functional can be written:

T| 2n

M
J=Lim E = § : x,(t)s, .., + z: Su (t)s.,.., | d&t . (2.4.6)
oo T o li=x 1 1(ii) -1 2(ii)

2 2
i ) . Su‘(t)s.,... about the same order
We like to make the terms xi(t)sl(ll) and uJ( ) 2(ii)

of magnitude when 6xi(t) and Guj(t) take on their maximum values. If we let:

Sx. (t) = 70 veh/mi i odd,
i max
or (2.4.7)
6x. (t) = 30 mi/hr i even,
i max
and
Su, (t) = 1. (2.4.8)
i "max
Then, the values,
Sy@ii) C L
(2.4.9)
SZ(ii) = 5000,

satisfy the above requirement.

The choice of constants described in the last few paragraphs are summarized
in table 2.1 for the main freeway and table 2.2 for the secondary freeway.
The initial conditions for each freeway are also given in thesé tables. Appen-
dix B contains the linearized system matrix AO' the linearized input matrix

§0, and the linear feedback gain EO'
The level of the noise sources for this example are relatively low. The
reason is that we are not trying to test the extended Kalman filter as much

as we are trying to test the control algorithm as a whole. The results will
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TABLE 2.1

STATISTICS FOR MAIN FREEWAY (A)

Driver Behavior v0 = 55 mi/hr p = 675 veh/mi pB = 75 veh/mi
Constants: max 2

T = 5 sec V = 9,375 mi /hr
Initial State: p = 74 veh/mi each link

v = 55 mi/hr each link
Initial Estimate: p = 74 veh/mi each link

v = 55 mi/hr each link
Static Operating pd = 74 veh/mi each link
Point:

vd = 55 mi/hr each link
Input Flow: Colored poisson process with:

Mean = 4077 veh/hr
Std. deviation = 1211 veh/hr

(Normal poisson std. dev. = 64 veh/hr)
40-sec pulse from t=12 to t=52 with:

Mean = 14270 veh/hr
std. deviation = 2266 veh/hr

Observations: Density measurement on each link corrupted by zero
mean Gaussian white noise process with:

Variance = 16 vehz/hr2
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TABLE 2.2

STATISTICS FOR SECONDARY FREEWAY (B)

Driver Behavior v. = 55 mi/hr P = 225 veh/mi P_ = 25 veh/mi

0 max B
Constants: 2

T = 5 sec vV = 9,375 mi /hr
Initial State: p = 18 veh/mi each link

v = 55 mi/hr each link
Initial Estimate:| P = 18 veh/mi each link

¥ = 55 mi/hr each link
Static Operating pd = 18 veh/mi each link
Point:

vd = 55 mi/hr each link
Input Flow: Colored poisson process with:

Mean = 1000 veh/hr

std. deviation = 600 veh/hr

(Normal poisson Std. dev. = 31.6 veh/hr)

Observations: Density measurement on each link corrupted by zero

mean Gaussian white noise process with:

Variance = 16 vehz/hr2

Weighting matrices (both freeways):

5000 0

0 5000

-31-




deteriorate to some extent if the level of noise is raised, but the filter §till
works reasonably well (see orlhac et al [1975])). Thus, we may cxpect that the
control system will work reasonably well under higher-noise levels also. For
these same reasons, the measurements are taken to be linear, and the initial

conditions for the filter are the same as the initial conditions for the

states.

The results from the example are shown in figures 2.7 through 2.13. The
graphs are paired corresponding to their physical location on the freeways.
The density graphs for the first links (links 1 and 2) of each freeway are in
figure 2.7, the second links (links 3 and 4) in figure 2.8, and the last links
(links 5 and 6) in figure 2.9. The velocity graphs are similarly organized in
figures 2.10 through 2.12. The graphs of the controls are in figure 2.13.

The length of the experiment is 200 seconds, or 3-1/3 minutes. If the con-
stants V and T are chosen to correspond to their typical physical values, the

time span may be longer (approximately 10 to 15 minutes), but the qualitative

behavior remains the same.

To analyze the behavior of the controller, we will first consider the open-
loop (uncontrolled) state. On the secondary freeway (links 2,4, and 6), the
density and velocity remain approximately at their nominal values. The reasons
for this behavior are that the system is stable near this operating point, the
level of the driving noise is low, and there is not input to secondary freeway
from the ramps. Thus, the traffic which is initially in a steady-state con-

dition continues to flow smocthly.

The conditions on the main freeway are not nearly as satisfactory. When
the flow pulse enters the system, the density on link 1 of the main freeway
increases rapidly beéause the capacity of the link is exceeded. This effect
peaks at t=52 seconds, and the density starts to decline on the first link
until it has almost returned to the nominal by t=200 seconds. The pulse of
flow continues to propagate downstream increasing the density and decreasing

the velocity successively on links 3 and 5.

The situation is that there are a lot of vehicles slowed on the main

freeway while there is much unused capacity on the secondary freeway. This
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can be seen in the flow versus density diagram for links 3 and 4 (fiqure 2.14).
The solid curve is the fundamental diagram for each link, representing the
feasible static operating points. While link 3 is actualiy exceeding its
capacity (a temporary dynamic condition), link 4 is operating at about half-

capacity.

We may expect the centralized controller to take advantage of the unused
capacity of the secondary freeway to help the system recover. As figures 2.7
to 2.12 show, this is exactly what the control system does. Links 2,4, and 6
are used to carry a portion of the flow that is carried on the main frecway_in
the controller system (see figure 2.15). Consequently, the main freeway is

not affected as much by the input-flow pulse, and can recover more quickly.

Figure 2.13 shows the actions of the controller. We see that a large
amount of flow is diverted from the main freeway at the first pair of ramps
during, and for a short time after, the pulse. A lesser amount of flow is
diverted at the same time at the second pair of ramps. During the remaining
time, the controls still divert flow as needed from the main to the secondary
freeway. We also note that our choices for the weighting matrices S. and

1

§2 in the quadratic cost functional have seemed to work well in this case.

As a measure of the performance of the controller, we have used an

approximation to the actual quadratic cost criterion. The actual cost is:

™

. 1 '
J = Lim E {7 f [(i(t)-io) Sy (i(t)—io)
T>o0 0

(e -u)" §2(g(t)-go)] at$ . (2.4.10)

We approximate this by a finite sum over the interval of the experiment:

Q>
Il
wn
o

{[i(km'iol' _S_l[_>5(kA)-3t_O] + [u(kB)-p 1" §2[y_(kA)-gol},

o
Il
o

A=4. ' (2.4.11)
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can be seen in the flow versus density diagram for links 3 and 4 (figure 2.14).
The solid curve is the fundamental diagram for each link, representing the
feasible static operating points. While link 3 is actualiy exceeding its
capacity (a temporary dynamic condition), link 4 is operating at about half-

capacity.

We may expect the centralized controller to take advantage of the unused
capacity of the secondary freeway to help the system recover. As figurcs 2.7
to 2.12 show, this is exactly what the control system does. Links 2,4, and 6
are used to carry a portion of the flow that is carried on the main frecway.in
the controller system (see figure 2.15). Consequently, the main freeway is

not affected as much by the input-flow pulse, and can recover more quickly.

Figure 2.13 shows the actions of the controller. We see that a large
amount of flow is diverted from the main freeway at the first pair of ramps
during, and for a short time after, the pulse. A lesser amount of flow is
diverted at the same time at the second pair of ramps. During the remaining
time, the controls still divert flow as needed from the main to the secondary
freeway. We also note that our choices for the weighting matrices S. and

1
§2 in the quadratic cost functional have seemed to work well in this case.

As a measure of the performance of the controller, we have used an

approximation to the actual quadratic cost criterion. The actual cost is:

m

- Li 1 -x )" -
J = Lim E{ L J/. [(g}t) 50) §1(§(t) %)
0

+(gﬁt)-go)' §2(gﬁt)—go)] dt, . (2.4.10)

We approximate this by a finite sum over the interval of the experiment:

Q>
]
u
o

{[_:3(kA)—3<_0]' S, [x(kA)-x,1 + [u(kd)-u,1" §2[g(kA)-gol},

P
]
o

A=4. ' (2.4.11)

-40-



FLOW (veh/hr)

FLOW(veh/hr)

9000
8000
7000
6000
5000
4000
3000
2000

1000

4000

:

g

1000

- Operating Point at t = 76
TAAXIMUM STATIC -~
FLOW

1
75 150 250 675

DENSITY (veh/mi)

MAXIMUM STATIC FLOW

e e e s e e e = e

UNUSED
CAPACITY

Operating Point
att=76

18 80 225
DENSITY (veh/mi)

Figure .14 UNi ONTROLLED FLOW DEMANDS ON CORRIDOR

-4]1-



8000 -
7000 |-
MAXIMUM STATIC FLOW
00 T T T T T T T o~ ]
o Operating® |
< 5000 | Point ot ! |
[ t=76 |
> |
= 4000 F—--g | |
2 I |
9 |
= 3000 | !
|
2000 | :
! I
1000 | |
| '
11 ]
75 130 250 675
DENSITY (veh/mi)
4000 P
< 3000 |
[ 4]
2
% MAXIMUM STATIC FLOY_V_
g 2000 | Operating
Point at :
t=76 |
1000 |- :
| |
| |
i i i
25 50 80 225

DENSITY (veh/mi)

vigure 2.15 CONTROLLED FIQW DEMINDS ON CORPIDOR

S, B



The results from this type of approximation must be viewed with caution.
Since the statistic is evaluated one time for only on case, the statistical
validify.is questionable. Taken in this context however, it can given an
indication of the improvement in the system performance. The resulting open-
and-closed loop statistical costs are:

Pl

J = 5.15 x 105 ’
open loop

J 5
I tosed loop = 4-74 X 107 (2.4.12)

% improvement = 8.

2.5 Conclusion

In this section, we have given a brief development of the LQG regulator
approach to control-system design. The LQG design philosophy has been applied
to the freeway corridor problem, and the resulting design to a small problem.
Although more testing is needed, the results from the problem indicate that

the centralized controller represents a workable design.
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3. AN APPROACH TO DECENTRALIZED CONTROL

3.1 Introduction

As has been shown in section 2, a working centralized stochastic control
system can be designed for a freeway corridor. The control system has two maic
drawbacks however. The first is that a large amount of computation is requiroc
and this requirement grows rapidly with the number of sections in the corridor.
The second is that the amount of communication required quickly becomes prohibi

tive as the length of the corridor increases.

These two problems imposela serious limitation on the effectiveness of the
centralized controller. To reduce the computational and communication require-
ments, some type of decentralized control algorithm must be implemented. In de
signing the decentralized controller, it is desirable to avoid an ad-hoc approi
as much as possible. Instead, we may rather rely on theory and mathematical

techniques subject to the computation and communication constraints.

To accomplish this objective, we will step back from the specifics of the
freeway corridor, and concentrate on a more general class of decentralized con
trol problems. The remainder of this section presents the decentraiized contr

problem, and develops a sub~optimal strategy for its solution.

3.2 The Decentralized Control Problem

Consider the stationary linear (or linearized) system:

x(t)

Il
|
%

(t) + B ult) + E(t),

y(t) = C x(t) + 8(t), (3.2.1)

where £ and § are Gaussian white noise processes with:

E{E(t) £' (D)}

2 S(t - T)r

e{6(t) ' (D} =R (t - 1), _ (3.2.2)
{f(t) 8'(M} = E{E(t) x' (0} =E{8(t) x'(O)} = 0.

As in section (2.3), we wish to choose a feedback law
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£(x(t)), (3.2.3a)

c
@
I

h(x(t), u(t), y(t)), (3.2.3b)

% >
@
]

T

E{l'- [_}E'(t) s, x(t) =u'(6) § y_(t)] dt}. (3.2.4)
0

2
If the estimator (3.2.3b) is the same dimension as the system (3.2.1) and all
the observations are available, the optimal estimate is given by the linear

Kalman filter (see section 2.3). The optimal feedback law is also linear:
u*(t) = -G x(t). (3.2.5)

The feedback gain matrix G and the Kalman gain matrix H can be readily found

off~line.

In the case we will consider, we will assume that there are M controllers.
Each controller has a subset of the system states, Ei' and a subset of the con-
trol variables, u,-. The individual controller's objective is to choose its
input variables as a function of its estimate of its states to minimize the cost
function (3.2.4). The controller is allowed to use only a subset of the measure-
ments, Xi' and certain communicated estimates from other controllers to form its

own estimateslii.

Mathematically,
u, (b)) = £ (x,(8)),
x, () =h, (x, (), y, (), D x(t), ult)), (3.2.6)
where
%, (t)
)_(_(t) = : ’
X, (t)
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u, (t)

_1_1_( t) : I3

EM(t)

Qi = matrix fixing the structure of the communicated estimates and fi

and Ei' i =1, M are chosen to minimize the cost function (3.2.4).
Unlike the centralized control problem with classical information pattecrn,
the solution to this problem is in general non-linear, and the problem is

impossible to solve optimally in most cases. What is needed is a suboptimal

design that:
(a) 1is not too difficult to solve;

(b) is practical to implement from a computation and communication

standpoint;
(c) works reasonacly well; and
(d) avoids being ad-hoc as much as possible.

Although these conditions are loosely stated, they give us guidelines for
choosing a method of suboptimal design which is applicable to a wide range of
problems. To satisfy these conditions, a parameterization approach suggested
ecarlier will be used. First, we will choose the filter structure Ei and the
feedback law 9; to be linear. It will be seen later in this section that con-
dition (a) is satisfied. The linearity and structure of the filter satisfy
condition (b) as well as any method can, and the only part of the method that

is ad-hoc is the restriction to linearity.

The only condition that remains to be satisfied is the performance of the
resulting controller. This condition will not be satisfied for every type of
system. However, if the system is stabilizable through the decentralized
linear feedback, it will be possible in many cases to find a "reasonable" lineax

solution. This will be verified for the freeway corridor in section 4.

We first fix the structure of the estimator and feedback law for the ith
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controller to be linear:

u, (8) = -G, X, (v), (3.2.7)
M

gi(t) =F;; X () + g; Fis gjm + H, (y, (t) - _c_igi(t)) + B, u(t).
.?i#i

Where the elements (or some of the elements, the others begin prespecified)
of the matrices F.., F
—ii

Eiy H;, and G; are chosen to minimize the cost functional
(3.2.4).

By definihg the matrices:

P = [F..],
—_— —ij

we can rewrite equations (3.2.7) as:

u(t) = -G x(t), (3.2.9a)
R(t) = F £(t) + H(y(t) - C £(£)) + B u(t). (3.2.9b)

Recalling the original system equations:

x(t)

0
b
[%

(t) + B u(t) + E(t),
y(t) = C x(t) + 6(t), (3.2.10)

we can combine equations (3.2.9) and (3.2.10) to form the overall system
equation:

x(t) A - BG x(t) I

|lo

E(t)

A

i) |mc E-Bg-mc[|&® o Hjlemw
(3.2.11)

We can now state the problem:
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PROBLEM STATEMENT A:

Choose the elements of F, G, and H which are not prespecified to minimire

the cost functional:

: T
3= e E{%fo [é (£) §; x(t) + u'(€) S, g(t)]dt}, (3.2.12)

subject to equation (3.2.11).

Although problem statement A is a precise statement of the problem, it
offers no insight to the solution of the problem. To obtain the insight, we

try to reformulate the problem. Substituting (3.2.9a) in (3.2.12) we get:

T
J = I,I‘\ﬂ E{%L [3{_' (t) 5, x(t) + x'(t) G' s, _qg(t)]dt}. (3.2.13)

Wonham [1969] has justified the interchange of the expectation and integration

operations in (3.7.13). Interchanging these operations gives:

T
f E{x'(t) §; x(t) + x'(¢) G' S, G &(t)} dat . (3.2.14)
0 .

We now use the basic trace identity

tr [§'§]= tr [yx_'], | (3.2.15)

and the linearity of the trace and expectation operators to get:

T
_ Lim _1; A ~
T = e T ﬁ [tr s, E {x(x) x'(0)} + tr ¢' s, GE {k(t) X' (t)}]dt.
(3.2.16)
Using the linearity of the integral and making the identifications:
Z,,(8) = E{x(c) x' )},
I,,(t) =E{&(t) &' (D)}, (3.2.17)

we get:
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Lim | 1 | |l ,
= -_— v -_—
J tr{Sl le (t) dt| + G Sz G T Zzz(t) dt } .

Now define:

S 0
s =| + -
0 G'(a) s, G(o)
= £@ s, s
(5. (®)  I._(t) x| x|
I e - D | '
I, ® I, FOIEG
[ 2 -B G() .
Alo) = >
H(a)C F(a)-B G(a)-H(2)C
F_; 0 Q9 o
La) = g = R
0 H(a) 0 R

(3.2.19)

where: o = vector of the elements of the matrices F, G, and H that are not

prespecified.

Then (3.2.18) can be rewritten as:

. T
_ Lim 1
3= tr{_S_(Ot) [T fo £ (t) dt]} ,

and Z(t) = Afa) Z(t) + Z(t) A'(a) + L(WE L'(a).

If A(a) is stable, I(t) approaches the limit zss given by:

0=A(a) Z_ +L A'(0) + L(wE L"(a)
— -S4 “s5—~ - ==

Where:

T
Lim 1 A
o ;/0 () ae =3 _ .

(3.2.20)

(3.2.21)

(3.2.22)

(3.2.23)

Combining (3,2.22), (3.2.23), and (3.2.20) produces the following problem,

equivalent to problem statement A:
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PROBLEM STATEMENT B:

min ) = tr s(@ I _ (3.2.24)
— —'=— -=ss

subject to 0 = A(Q) -Z-:ss + g:-ss A'(a) + L(a) Z L'(a) . (3.2.25)

In concluding this section we make several remarks about the problem:

(a) The design of the decentralized control system has been reduced to
a static minimization problem which can be solved off-line. Thus,
the condition that the problem be fairly easily solved is satisfied.

(b) The structure of A(0) and L(a) is fixed by equations (3.2.19). In
turn, the structure " of F(a), G(a), and H(o) are fixed by (3.2.8). By
using the special properties of the system that this method is being
applied to, the Fjs, Ei' and G —i matrices of (3.2.8) can often be fixed
before the static minimization is begun. This further reduces the
complexity of the problem.

(c}) It should be emphasized that problem statements A and B are entirely
equivalent.

3.3 Method of Solution

In section 3.2, the problem of designing a decentralized controller is
reduced to a constrained static minimization problem. There are several effi-
cient methods available (see, for example Fletcher and Powell [1963] or Powell
[1964]) for the minimization of a multivariable function. The method that will

be used for this report is the Davidon-Fletcher-Powell (DFP) algorithm.

The DFP method requires the calculation of the gradient of the cost

function. Define:

[~ T
_9_
30, J(a)
%E-J(QQ = . = gradient of J(a). (3.3.1)
]
5 J()
| %% T

Computing the derivative with respect to ai:



9 3 )

mq J(@ = tr {m- Q) o+ 9(a) 5= I ). (3.3.2)
1 1 1

The first term of the right-hand side is easy to compute since Ess is already

available from the calculation of J(0). To compute the second term, we first

differentiate the constraint equation (3.2.22):

9 ' 3 = ]
+ {5&— A(g)gsf‘ + 'I—:SS -Z%TJ_-A(E) + o [L(G.) :_E (g)]} (3.3.3)

which can be solved for-mif Ess' This suggests the following algorithm to
i

compute the cost and its gradient.
A . - Z
(a) Solve equation (3.2.22) for et
(b) Evaluate J(Q),

(c) Compute the driving term (the term in brackets) for equation
(3.3.3) for i =1,...q,

9
(d) Compute o J(ai) from equation (3.3.2).
i
Although the concept of the algorithm is simple, solving the matrix equa-
tions as required by steps (a) and (c¢) can be difficult. A total of q + 1

Lyapunov equations must be solved for each gradient evaluation.

A considerable amount of research concerning the efficient solution of the
matrix Lyapunov equation has been done. The methods of solution fall into four
categories (for a survey of methods see Hagander [1972]); direct or linear-
equation methods, eigenvalue methods, companion-form methods, and iterative

methods. Of these classes, the eigenvalue and companion-form methods suffer

from accuracy problems.

The method of solution of the Lyapunov equation must come from the
remaining two classes. Of these classes, the iterative methods at first appear
computationally faster. The drawback is that there is no way for these methods

to take advantage of the sparsity of A(a). The iterative methods require 2
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matrix multiplications for each iteration of the Lyapunov solution, and approxi-
mately 10 iterations for convergence. For each gradient evaluation, this means
approximately 20 qn3 multiplications (where g is the number of parameters and

n is the dimension of A(®)). For n = 30, g = 30, and a single multiplication
time of 10-5 seconds, the time for one gradient evaluation is over 2-1/2 minutes

Obviously, we must make use of direct methods.

To use a direct method, we must take advantage of the sparsity of A(q)
and the structure of the problem. For a non-sparse A(d), the most accurate and
efficient method, the L-U decomposition (see Moler and Forsythe [1967], and
Appendix A) requires approximately n6 multiplications for the factorization.
The matrix A(a) will contain relatively few non-zero elements for most large--
dimensional problems. This property can be used to eliminate all multiplica-
tions involving zeroes, and thus reduce the computational requirements con-

siderably.

Another property of the static-minimization problem can be used efficiently
by the direct methods. The equations for L and for 2 differ only in
—ss do; —ss

the driving term; the syster matrices are the same. This means that the L-U
decomposition need only be done once per gradient evaluation. The solutions

of the (g + 1) Lyapunov equations can be accomplished by forward and backward
substitution. This normally requires approximately n4 multiplications per
equation, but this again can be considerably reduced by taking advantage of

the sparsity of A(a).

In summary, the method used to solve the constrained static-optimization
problem of section 3.2 will be to use the DFP gradient method. The gradients
will be computed using the following algorithm (slightly modified from the

earlier algorithm to save computation time and storage):

(a) Expand A(g) (and denote the expanded version E(OL)) to write the
upper-half of gss as a column vector (denoted z;s) and thus transform the
n-dimemsional equations into a E-(-E—g—g'-)—-dimensional linear equation of the

form:

(o)

z
='=ss

d

’ (3.3.4)
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(b)
(c)
(a)
(e)
(£)
(g)
(h)

Factor gka) into lower and upper triangular form (L-U decomposition).

Use forward and backward substitution to solve for

I
=ss
Compute J(q).

Let i = 1,

Solve for 5%— L(a) by using forward and backward substitution.

1

9
Compute -ZE- J(a) .

i=41i+1; If i < q, to to (e) and repeat steps (e) through (h).

Otherwise return to DFP algorithm.

3.4 An Example

To give some insight into the method of design of decentralized controllers

presented in sections 3.2 and 3.3, we will examine a simple 2-dimensional problem.

Problem 3.4a: Given the l-dimensional system:

E{6(t)0(T)}

% (0

x(t) + u(t) + E(t),

y(t) = x(t) + 6(v),

e{E()g(m)}

G(t-T) 4

6 (t'T) ’

E{6(t)E(T)} = o. (3.4.1)

Choose h and g in the following control system:

u(t) -gx(t),

2(6) = R(£) + h(y(B)-R(1)) + u(t). (3.4.2)

To minimize the cost functional:

T
_ Lim 1 2 2
g=e {0 7 ./o (x"(t) + u”(t))atl}. (3.4.3)

Solution 1l: We note that this is simply a l-dimensional LQG problem. The gains
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g and h can be found by solving the scalar algebraic Ricatti equations:

0=20+1-~ 02

h=0 (3.4.4)
0=-2k -1+ 02

g = k. (3.4.5)

These equations give the solutions:

h=1+Yv2,

g=1+7v2. (3.4.6)

Solution 2:  We now apply the method discussed in section 3.3. Formulating

the problem as in problem statement B, we have the closed-loop system:

x(t) 1 -g x(t) 1 ol]&)
] = + i (3.4.7)
x(t) h 1-g-h || %(t) 0 hi]le(w)

which gives the problem:

1 0
minimize J(Q) = tr 2 L (o). (3.4.8)
0 g
Subject to:
1 -g 1 h 1 o
0= L (o) +Z () + 2l (3.4.9)
Lh 1-g-h -g 1-g~-h 0O h
where: _
g
g:
Lh

The first problem encountered is that the open-loop system is unstable.
To solve the problem, we need a stabilizing initial guess. Consider the closed

loop system (3.4.7). The characteristic polynomial of this system is:

52 + (g+h-2)s + (l-g-h + gh) = 0, | (3.4.10)
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Which gives the requirements:

g+ h>2,

(g-1) (h-1) > O. (3.4.11)

The stability region is drawn in figure 3.1.

A total of seven stabilizing initial guesses have been tried. The location
of the initial guesses are shown in figure 3.1, and the results summarized in
table 3.1. For the best initial guess (g = 1.5, h = 1.5), the convergence is
rapid and accurate. Several of the initial conditions have problems when the
DFP algorithm takes a step out of the region of stability. This, however, is
avoided in subsequent runs for all but one case by adjusting the stepsize in

the DFP algorithm. Otherwise, the algorithm has worked well for this problem.

Problem 3.4b: Given the l-dimensional system (3.4.1), choose g,h, and f in

the following control system:

u(t)

-g?( (t) ’

fc(t) £x(t) + hiy(t)-x(t)) + u(t). (3.4.12)

To minimize the cost functional:

J = E{Lim

T
f (x2(t) + u’(t))dt}. (3.4.13)
T-»c0 0

i

Solution 1l: Again this is simply a l-dimensional LQG problem. The solution

is:
£=1.0,
g=14+/2, (3.4.14)
h=1+v2.

jolution 2: We apply the static minimization method as in the solution to

problem (3.4.1). The closed-loop system with £, g and h arbitrary is:
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Figure 3.1 STABILITY REGICN FOR EXAMPLE 3.4a
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TABLE 3.1

SUMMARY OF RESULTS FOR THE ONE-DIMENSIONAL PROBLEM 3.4a

Initial Guess Resulting Value Cost Iteration
g h g h
1.5 1.5 2.414232 2.414230 16.484241 4
3.0 2.0 2.4913101| 2.3411570 16.485260 1o0*
4.0 3.0 2,.550866 2.288164 16.485345 13
1.5 7.0 2.343572 2.489523 16.485266 15%
7.0 7.0 2.414219 2.414235 16.485254 4
7.0 20.0 DID NOT CONVERGE Lh
20.0 20.0 2.413993 2.414135 16.485271 4
OPTIMAL 2.414214 2.414214
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x(t) 1 -g [=x) 1 ol[&
. = + . (3.4.15)
x(t) h  £-g-h JL%(t) 0 hJjLe(t)

Again, we restate the problem in the form of problem statement B:

1 o0
minimize J(Q) = tr[ 2] (@, (3.4.16)
0 g

subject to:

1 | 1 h 1 o
0= I (a) +Z1 () + e (3.4.17)
h f-g-h -g £f-g-h 0 h

To solve the problem, we again need a stabilizing initial guess. Proceed
as in problem (3.4.1), we find that the system (3.4.15) has the characteristic
polynomial:

s2 + (g+h-f-1)s + (f-g-h+gh) = 0, (3.4.18)

which gives the requirements:
g+h>£f+1,

(g-1) (h-1) > 1-f, (3.4.19)

for system (3.4.15) to be stable. The stability regions for f=2, f=-1, and
=~4 are shown in figure 3.2. The stability region for f=1 is the same as

in figure 3.1.

The interesting feature that can be observed from figure 3.2 is that
there are two stable regions for f=-4. The second equation of (3.4.19) divide
the g-h plane into three regions, two of which satisfy the inequality if £ <1
(see figure 3.3a). For f > -3, the line generated by the first equation of
(3.4.19) does not intersect region (B) (see figure 3.3b). However, if f < -3,

the line intersects region (B), and forms a second stable region (figure 3.3c)

The results for eight initial guesses are summarized in table 3.2. Two
interesting problems have occurred. For the initial quess g = 20.0, h = 20.0,
and £ = 1.5, the DFP has stepped from one stable region to the other, then has
interpolated between the two regions.
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Figure 3.2 STABILITY REGIONS FOR THE ONE-DIMENSIONAL
PROBLEM 3.4b
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Figure 3.3 INTERACTION OF STABILITY INEQUALITIES FOR
THE ONE-DIMENSIONAL PROBLEM 3.4b
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TABLE 3.2

SUMMARY OF RESULTS FOR THE ONE-DIMENSIONAL PROBLEM 3.4b

Initial Guess

Resulting Value

Cost Iteration

g h f g h £

5| 1.5 ] 1.5 2.415746 | 2.415755 | 1.002979 | 16.485341 5
5] 2.5| 1.5 2.139196 | 3.002152 .9610236| 16.544185 3
.0 | 3.0] 1.5 3.192386 | 1.868619 | 1.173455 | 16.491242 3
.0 | 7.0 | 1.5 13.607823 .4283597 [10.207073 | 16.485272 7
w0 | 7.0 | 1.5 2.414417 | 2.414443 .999611 | 16.485271 6
.0 120.0 | 1.5 DID NOT CONVERGE o

.0 | 3.0 0.0 3.169702 | 1.838773 | 1.180188 | 16.485283 7
.0| 7.0 | 0.0 2.48561 2.485624 | 0.971772 | 16.514650 5

OPTIMAL 2.414214  2.414214 1.0
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The second problem is that there seems to be several points with the

same minimum cost. To explain this, we rewrite the system as:

x(t) 1 -g x(t) 1 ol &
L&- h  f-g-h || &%) o hi|ecw)

1 0 x(t)
y(t) = , (3.4.20)
0 g X(t)

with the cost function:

T
1
3 = E{Lim 5 y(t)y(t)atl. (3.4.21)
0

This problem is equivalent to problem (3.4.2).

The transfer function of system (3.4.20) is:

s- (£-g-h) ' -gh :(s).T
(s-1) [s-(f-g-h)]1+gh !  (s-1) [s-(f-g-h)]+gh -
Y(s) = | —==———mmmmmmmmome e §m—— —— .
gh i gh(s-1) 0(s)
(s-1) {s-(f-g-h) l+gh ! (s=1) [s-(f-g-h)1+gh
L -
(3.4.22)

Examining (3.4.22), we find that the parameters appear in only two expressions

(f-g-h) and (gh). Thus, any parameter combination which satisfies:
f-g-h=Yy,
gh = 8, (3.4.23)
will have the same input-output behavior, and hence, from equation (3.4.21) th
same cost. Equations (3.4.23) describe a continuous curve in parameter space
for each (B,Y) pair. Thus, there is not a unique solution, even locally, to

problem (3.4.2). Table 3.3 compares the optimal f and Y with the results fron
equation (3.4.2).

The two problems described above are problems that are likely to occur ir

-62-



COMPARISON OF RESULTING SOLUTIONS

TABLE 3.3

Percent
Resulting Value Cost y=£f~g~h B=gh Deviation

g h £ v 8
2.414214%12.414214* | 1.0* ~3.828427 | 5.828427 | ©O 0
2.415746 | 2.415755 1.002974 [16.485341 | -3.828527 | 5.835850 | 0.0026 | 0.127
2.139196 |3.002152 0.9610236 |16.544185 | -4.180329 | 6.422192 | 9.19 10.2
3.192386 [1.868619 1.173455 ]16.491242 | -3.88755 5.965353 | 1.54 2.35
3.607823 0.4283597 [10.207073 |16.485272 | -3.829110 | 5.829043 | 0.018 0.011
2.414417 | 2.414443 0.999611 |16.485271 | -3.829249 | 5.829472 | 0.021 0.018
3.169702 |1.838773 1.180188 |16.485283 | -3.828287 | 5.828362 | 0.0037 | 0.0011
1.48561 |2.485624 0.971772 |16.51465 -3.999462 | 6.178292 | 4.47 6.0
' Optimal.
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many situations. For this reason, they are discussed more generally in the

following two sections.

3.5 Choosing the Parameters

Problem (3.4b) indicates that the solution of the decentralized design
problem depends crucially on the choice of parameters. If a poor parameteriza-
tion is made, the solution may not be unique. However, if the parameterizatiol
is made too cautiously, the controller may not behave as well as possible.

Some guidelines for choosing parameters are needed.

The first problem is to define a "good" parameterization.

Definition 3.5.1:

The static-optimization problem (problem statement B) is identifiable fro

the cost if for every & which locally minimizes J(q), there exists an € > O,

such that
(£ |la-alf <&
(i1) J(@) = J(),
imply a = @.

It can be seen in the 2-dimensional example (3.4.2) that when the transfe
function is not uniquely determined by the parameters, the static optimizatior
problem is not identifiable from the cost. Identification of system parameter
from the transfer function has been examined extensively by Glover [1973].

Using his definition:

Definition 3.5.2:

Let (A,B,C) () *: @ C 2> R (N = n(n+m+p)) be a parameterization of the
system matrices (A,B,C) of a linear dynamical system. This parameterization

ig said to be locally identifiable (from the transfer function) at Q = Q.e Q

if there exists an € > 0, such that

() [la-8&ll <e [|8-8l]l <e o Be

* A is nxn; B is nxm; C is pxn.
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and

(11) C@A“(@B(@ = c(B)A“(B)B(B); k=0,1,2,...,

We state the following proposition:

Proposition 3.5.1: Problem statement B of section (3.2) is identifiable with

respect to cost only if the system (A(®), L(Q), C(®)__ where:
C'(w)c(a) = s(a),
A(®) and L(0) as given by equation (3.2.19) p
is locally identifiable from the transfer function at every g which locally

minimizes J(0).

Proof: Suppose 0 is a local minimum of J(0).
Assume the system (A(Q), L(0), C(0)) is not locally identifiable at d. Then

there exists a nonsingular matrix P and B # @, such that

A =2 la@p, (3.5.1)
L@ =P L@, (3.5.2)
C(8) = c(B)P for all e > 0. (3.5.3)

This implies (using (3.5.3) in (3.2.24)):

@ = tr{s@ I (@)} = tx{p'c' )RR I (8)}
= tr{c* (g)g(g)gg @e'l. (3.5.4)
Now:
AB) L (B) +I (Qa'(@) + L) EL'(@) =o. (3.5.5)

Premultiplying by P and past-multiplying by P' we obtain

PAQEREE @2 +2Z @2 @) TAOR + P L@ EL (@R =0
(3.5.6)
=> AP EZ (MP'] + [P I (Q)P'1A'(B) + L(B) EL'(B) = 0.
(3.5.7)
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I@®=pL Qp. (3.5.8)
Hence:
g@ = telc' ®)c® L B} =3®), (3.5.9)
=> the problem is not identifiable with respect to cost.
This result however is not sufficient, as the following counterexample

demonstrates:

Example 3.5.1: Consider the l-dimensional l-parameter system:

x(t) = ox(t) + E(t),

e{l€(t) &)} = §(¢-1), (3.5.10)
T
with: J(@) = E{Lim% ax? (t)at}.
e 0

Reformulating in terms of problem statement B:
We obtain

J(@) = tr{Q(a) I} =a 0. (3.5.11)
Thus,

=200 + 1 = 0. (3.5.12)
Which implies

o= ;—a . (3.5.13)
Which results in

I = ez =3 (3.5.14)

for all a. Thus, the problem is not identifiable with respect to the cost alth

it is identifiable from the transfer function:

LS T -)
X(s) = s H(s). (3.5.15)

If identifiability from the transfer function is a sufficient condition fo

a parameterization to be identifiable from the cost, we may have several system
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tests for the latter. Glover {1973] has developed two such tests for identifia-
bility from the transfer function in terms of the determinant of a large matrix
being non-zero. As we have seen in example 3.5.1, a parameterization satisfying
these tests will not necessarily be identifiable from the cost. These tests can,
however, give us some guideline for the initial parameterization. When used
with physical reasoning and intuition, the tests can provide a reasonable choice

of parameters.

3.6 Existence of Solutions

One of the problems encountered in section 3.4 is that the DFP algorithm
stepped out of one stable region into an unstable region or another stable
region. 1In this section, we will present a local existence result which will

allow us to draw several conclusions concerning the behavior of the DFP algorithm.

The following theorem guarantees the existence of a local minimum to problem
statement B with some slight restrictions. Then, the proposition shows that the

restrictions are satisfied for a general class of problems.

Theorem 3.6.1: Consider the problem:

minimize J(a) = tr{s(a) Z ()}, (3.6.1)
subject to  A(a) I (o) + I (@)A'(@) + Z(a) = 0.
Assume:

(a) Lim J (g) e,
| 1] |+

(b) Re{), [A(x)]} < O cedCrY, i=1,...,n,

(c) A(a) is continuous and differentiable (i.e., C"), a e,
(@ E() is ' g€ o, |

(e) S(a) is C' g e,

(£) (a(o), @)) is observable (where @' /s () 4 S(a)),
(g) (A(®), vZ(a)) is controllable.

Then, there exists a local minimum of J(a) on 4. Moreover,
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07 (0)
5o exists ¥ & € . (3.6.2)

outline of Proof: The proof is in 3 steps. In step 1, we use a result by

Mather [1973] to show that J(a) is C' on <. Step 2 demonstrates that as Q
leaves ./ the cost must go to infinity. Step 3 then summarizes the conclusions

and completes the proof.

Proof: Step l. Rewrite equation (3.6.2) as a linear equation parameterized

by a.
A(q) _i_:_v (o) = -_'-‘-_v(__), (3.6.3)
where:
A(0) = expanded version of A(Q),
_Z_IV(_) row-wise vector of L (&),
gv(_) = row-wise vector of Z(Q).

We can now apply an extended version of a theorem by Mather [1973]. The
theorem states that if M(a) and £(a) of the linear equation:
M(@)x(a) = £(0), (3.6.4)

are continuous and differentiable for all o e C RI, then x(a) is continuou
and differentiable for all o € C RI. Since A(Q) and E(a) are C' for all

o € & (assumptions (c) and (@)), so are A(a) and g, (@. Thus, by Mather's
theorem, I _(a) and therefore L(a) are C' for all o € . Since § (@) is C' on

o/ (assumption (e)) we can conclude that J(a) is C' on 4.

Step 2. Define 3.« to be the closure of &; i.e.:
3¢ = {a|Re) [A()] = O for some i ¢ {1,nl}. (3.6.5)

We now show that as ¢ + 0./ from within &/ the cest J(g) blows up; i.e., goes

to infinity. Let T(a) be such that:

. D 0
() Alw) T (@) = 1, ,

0 °D

D



where

A1
1 (0
b= [0 X ° 1.
D,
-
0 Ai

Then (3.6.2) becomes:

(TA_T'l) (TLT') + (TET') (TaT 1) + TE T =o0, (3.6.6)
and (3.6.1) becomes:
J(@) = tr{ (3'1)'§ g'l(Tz_T_')}, (3.6.7)

where the explicit dependence on o has been suppressed. To simplify (3.6.6)
and (3.6.7), let us define,

TaT L,

o

(3.6.8)

2]

e
ne

We then obtain

Ajl, + LA'_+ =0, (3.6.9)

L]
t
La}
——
(2]
™

J(a)

The solution to (3.6.7) if EU is diagonal is:

= Eu,
0., = —d__
ij Ai + Aj

If éb is not diagonal (the dimension of the largest Jordan block Di is greater

than 1), the solution Uij is still a linear function, L, of U(i—l)j’ Ti(j-l)'

and Eij:
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L(G . 7 g, ,. ) - g. .

_ (i-1)3 i(i-1) ij
o‘i, = N . (3.6.12)
J ! 5

(For a more detailed derivation of (3.6.11) and (3.6.l|2) , see Heinen [1971].

Consider now the behavior of the solutions as & approaches 8. from
within /. As o approaches 8.#, at least one eigenvalue, or one pair of
eigenvalues (since A is real) must approach the imaginary axis in the left~half
plane. Suppose )‘i is real, and )‘i + 0. Since (A, E_ is controllable with

-

£ > 0, the numerator of equation (3.6.11) (or (3.6.1la) if I_\J is not diagonal)

is non-zero. Thus, we see that

Lim oii +> o, (3.6.13)
Re[)\i]-*o

If )‘i and )‘j are conjugate pairs:

Lim
Re-[)‘i’)‘j] + 0 09 > - (3.6.14)

Because (A, /Q) is observable with Q > 0, equations (3.6.13) and (3.6.14) impl

Lim  J(a) * . (3.6.15)
o8

Step 3. In step 1, we have shown that J(a) is C' on S. Step 2 has shown that
J(a) approaches infinity as o approaches the boundary of «¢. By assumption (a
we have that the cost approaches infinity as H g_ll approaches infinity. Since
the cost J(a) approaches infinity as o approaches any possible edge of o, anc
since J(0) is C' on «, J(Q) must attain a minimum (although not necessarily

a unique minimum) on .

Proposition 3.6.1: Problem statement B with G and H as parameters (not F)
satisfies the assumptions (a) through (e) of theorem (3.6.1) if assumptions
(f) and (g) hold.

Proof: (b)-(e) are trivial.

Consider the equivalent problem statement A:
[}
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(@)

u(t) = -G(a) R(t).

T
Lim E‘%}'[ [x(t)' Q x(£) + u(t)' R u(t)lat},
T 0

(3.6.16)

Since R is positive definite and of full rank, and because E{&(t) X(t)} > o,

then
Lim J(e) *> =,
-»c0
oy |
where 0, = parameters associated with G.

_G
inequality to (3.6.2):

2lla@ sl > |1 E@l],
and therefore: ||= (a)ll
Izl > -
2l|a @

Taking the limit:

Lim [|[Z@]] » .
oyl [+

Since (A(0), vQ(a)) is observable:

Lim J(a) + =,
g |+

Similarly, applying the triangular

(3.6.17)

(3.6.18)

(3.6.19)

From (3.6.19) and (3.6.16), we can conclude that assumption (a) holds.

From the theorem and proposition presented in this section, we can con-

clude that the reason the DFP has left the region of stability is that the

stepsize is too large.
border of the region.

the stepsize.

The problem is not caused by a low cost along the
Therefore, we can hope to remedy the problem by reducing

However, this solution must be used cautiously since the con-

vergence of the algorithm slows down as the stepsize is reduced.

-71-



4. IMPLEMENTATION OF THE DECENTRALIZED CONTROL ALGORITHM

4.1 Introduction

Section 3 has developed a promising algorithm for the decentralized con-
trol of large-scale systems. This section evaluates the algorithm for the
freeway-corridor control problem which is presented and solved for the central-

ized case in section 2.

Section 4.2 discusses the corridor structure and philosophy for choosing
the structure of the decentralized controller. Section 4.3 contains the actual
corridor to which the algorithm is applied. The results are presented and dis-

cussed in section 4.4.

4.2 Corridor and Controller Structure

The freeway-corridor structure is the same as in section 2.2. The corridor
consists of a main freeway and one or more parallel arterials. All roadways
(freeway or arterial) are sectioned into links according to the topography of
the corridor. The dynamics of the corridor are governed by equations (2.2.1)
to (2.2.3) with the state variables being the spatial aggregate density and
velocity on each link. The controls that are available for the corridor are

the flows on the ramps which connect the roadways.

Since we are interested in applying the decentralized control algorithm
developed in section 3, we must separate the states, controls, and observations
into subgroups which will define subsystems, each of which will be controlled
by a different controller. Then, it must be decided which variables each con-

troller will be allowed to communicate to other controllers.

One way of choosing the subsystems is to use the centralized feedback and
Kalman gains as guidelines. The gains can be used to determine which states
are important to the controls and estimates of the other states. Suppose that
the (i,j)th element of the feedback gain go is several orxders of magnitude
smaller than the other elements of the ith row of EO' and that the standard
deviations of the states are approximately the same size. Then, it is reason-

able to assume that the elimination of state j would have little effect ~
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input i. In this manner, we can decide which states are most important in
determining the individual controls. The extended Kalman gain matrix H can
be used in a similar manner to determine which outputs are important to the

individual state estimates.

Since the inputs and outputs are distributed along the freeway corridor,
they can easily be associated with states of the corridor. The states are
grouped according to their mutual importance, and the separation of the sub-
systems can be chosen to coincide with any natural points of weak coupling

that may occur.

Often, the natural points of weak coupling will not occur as close together
as we like. In these cases, there may be too many states for one controller
to handle, or the physical distance over which the controller must communicate
will be too large. The system then must be separated at points where the filter
and feedback gain matrices are smallest even though the effects of the inter-
connections are not necessarily small. Thus, a tradeoff must be made between
the size of subsystems and the performance of the decentralized controllers.
If no points of weak coupling occur within a subsystem which is too large,
dividing the subsystem into two or more smaller controllers may degrade the
decentralized control system performance. The two designs must be evaluated,
and a judgment made as to whether smaller controller size (and hence, less

communication) or better system performance is more important.

Once the system has been decomposed into its individually controlled sub-
systems, the structure of the communicated variables must be fixed. We recall

the linearized decentralized filter equation:

gim = gif_ci(t) + 3;1 Eijg_:,j(t) + gigi(t) + gi[y_i(t) - 915-1“:”'

(4.2.1)
We note that for this particular filter structure (on which the analysis of

section 3 is based) allows only communication of estimates of the controllers.

This communication can be restricted by specifying the structure of the Eij

atrices.,
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One way to choose the structure of the Eij's is to note which state vari-
ables are "communicated" internally through the system dynamics; i.e., which
states are naturally coupled across the borders of the subsystems. The Eij
matrices can be chosen to duplicate the internal coupling of the system, and

thus, closely approximate the dynamics.

The manner in which the subsystems are fixed, and the communication
structure is chosen is closely analogous to the reasoning (see section 2.3)
behind the use of the extended Kalman filter. The communication structure
is picked to duplicate (as closely as possible) the linearized dynamics in
the propagation portion of the filter equation (4.2.1). The system is sepa-
rated into subsystems in such a way so that as little information as possible
is lost through the elimination of the off-diagonal terms in the filter gain

matrix H and the feedback gain matrix G.

A schematic diagram of the implementation of the decentralized control
system is shown in figure 4.1. The measurements are made on each subsystem
and are communicated to the respective controller. Each controller updates
its estimates from its observations and communicates its estimate to the appro-
priate set of the other controllers. At the same time, it is receiving estimates
from other controllers, and using these to propagate its own state estimates

and construct its own controls.

4.3 A Specific Corridor Structure

In this section, we will consider a specific freeway-corridor structure
to which we will apply the methods described in section 3. Since our ultimate
goal is to compare the centralized and decentralized controller designs, we

will use the same corridor and experiment as are used in section 2.4.

The corridor consists of a main freeway with a static capacity of 6220
vehicles/hour and a secondary parallel freeway with a capacity of 2075 vehicles/
hour (see figure 2.3). The driver-behavior constants, noise statistics, and

the penalty matrices §1 and S, are repeated in table 4.1 for convenience.

The first problem to be faced is how to choose the decentralized structur

Following the discussion of section 4.2, we examine the feedback gain ~
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Table 4.1

CORRIDOR STRUCTURE FOR DECENTRALIZED CONTROL EXAMPLE

Driver-Behavior Constants: T = 5 sec vV =9,735 miz/hr
Main freeway: Vo = 55 mi/hr pmax = 674 veh/mi
DB = 75 veh/mi
Secondary freeway: vy = 55 mi/hr P = 225 veh/mi
DB = 25 veh/mi
(see figure 2.4)

Input Flow (Main freeway): Colored poisson process with:
Mean = 4077 veh/hr
Std. deviation = 1211 veh/hr
(Normal poisson std. dev. = 64 veh/hr)
40 second pulse from t=12 to t=52 with:
Mean = 14270 veh/hr
Std. deviation = 2266 veh/hr

Input Flow (secondary freeway): Colored poisson process with:
Mean = 1000 veh/hr
Std. deviation = 600 veh/hr
(Normal poisson std. dev. = 3.16 veh/hr)

Controls: Implemented control is commanded control plus uniformly
distributed white noise process between + 10% of maximum

control.

Observations: Density measurement on each link corrupted by zero mean
Gaussian white noise process with:

Covariance = 16 vehz/hr2
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the extended Kalman filter gain H that are found in the centralized solution1

(see Appendix B).

We can see by examining EO and H that all the couplings are approximately
the same strength. By examining the relative magnitudes of the gain matrices,
we note that observations and controls from adjacent links have a decreasing
weighting by about one order of magnitude per link of spatial separation.
Thus, it appears that all rcasonable partitions will be approximately equiva-

lent from the analysis of the gain matrix.

Since the gain matrices do not give much insight into the choice of a
decentralized structure, we must use the topography of the corridor as a guide.
Because we are trying to design a decentralized control system, we obviously
want the two controls that are available to be generated from separate control
"stations". Therefore, we will separate the system into two subsystems (see
figure 4.2), with links 1 and 4 being assigned to controller A, and links 5 and 6

assigned to controller B.

The next step is to decide which state estimates to allow the controller
to communicate. By examining the matrix éo (Appendix B), we notice that the
only coupling between subsystems A and B are:

(a) density on link 3 to density equation for link 5,

(b) velocity on link 3 to density equation and velocity equation for
link 5,

(c) density on link 4 to density equation for link 6,

(d) velocity on link 4 to density-and-velocity equations for link 6,

(e) density on link 5 to velocity equation for link 3,

(f) density on link 6 to velocity equation for link 4.
If we allow the communication (see figure 4.2),

(1) Controller A transmits its estimates of density and velocity on

lIf the linear Kalman filter is used, the appropriate gain is obviously the
linear Kalman gain matrix Hy. Also, if the extended Kalman gain matrix H
has not reached a steady-state condition, the linear gain go can be used in
place of H.
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link 3 (63,03) and its estimates of density and velocity on link 4
(34:94) to controller B,

(2) Controller B transmits its estimates of density on link 5 (65) and

density on link 6 (54‘ to controller A,

we can choose F = A, and thus, propagate the exact linearized dynamics of the

’
system in the estimgtes for each controller.

By restricting the information transmitted between controllers to the
communications described in (1) and (2) (the estimates of the variables (a) to
(f) which couple the two controllers), the need to communicate the other six
state variables (especially the states associated with links 1 and 2) over
longer distances is eliminated. The advantage to this restriction is not very
dramatic for this small example. However, the communication requirements will
only grow linearly with the number of controllers in the system (assuming the
controllers remain about the same size). When compared with the much more
rapid growth in communication requirements for a centralized controller, the

advantage becomes much more apparent.

We can now formulate the problem in terms of problem statement B of

section 3.2:

minimize: J(a) = tr{s(x)Z(a)},

subject to: 0 = A(w)Z(a) + Z(wA(a) + El(a), (4.3.1)
where:
s 0
S(g) = 1 ’
L}
12 5%
A -B_G
Al = | ° 05D )
_H C F-B G -H C
0 o
2y = '
_9' H_RH

= lincarized system matrix given in Appendix B,
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go = linearized input matrix given in Appendix B,

C0 = observation matrix given in Appendix B,

§1 = state penalty matrix (table 4.1),

§_2 = input penalty matrix (table 4.1),

R = observation noise spectral density (table 4.1),

Q = process noise spectral density derived from the input noise

sources (table 4.1),

F=A_since the communication structure as fixed above allow this choice,

Sy = decentralized feedback gain matrix (locations of non-zero elements
fixed),

ED = decentralized filter gain matrix (locations of non-zero elements
fixed),

o = vector of non-zero elements of ED and ED'

With this formulation, we can apply the method described in section 3.3 to
solve for the decentralized feedback gain QD and decentralized filter gain ED'
The resulting matrices can be found in Appendix C. Table 4.2 gives the require-
ments of the algorithm for this problem along with a comparison of the initial
and final costs to the optimal costs J*(0) using the full feedback and Kalman

gains.

4.4 Decentralized Control Example

This section will use the gains developed in section 4.3 (Appendix C) to
implement the decentralized control structure shown in figure 4.2 The same
experiment that is performed in section 2.4 (see tables 2.1 and 2.2) with the
centralized controller is performed in this section with the decentralized con-

troller.

The resulting graphs for the freeway can be found in figures 4.3 to /
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Table 4.2

REQUIREMENTS FOR SOLUTION OF STATIC OPTIMIZATION PROBLEM

Dimension of system: 12 states
‘Dimension of filter: 12 states
Number of controls: 2
Number of observations: 6
Number of controllers: 2%

Parameterization: Gain and filter matrices for both controllers:
12 control gain parameters

20 filter gain parameters

Total 32 parameters
Computer storage: 325 kilobytes
Iteration: 3%k
Gradient evaluation: T*
CPU Time: 0.5-0.75 minutes**
Optimal cost: 1952,9661
Cost of initial guess: 2332.6114

Percent increase over optimal: 19.4
Cost of results: 2159.7843

Pexrcent increase over optimal: 10.6

* See Figure 4.2,

** The program has continued for 5 more iterations (25 total gradient
evaluations). The reduction in cost over thse 5 iterations is less
than 0,0025 percent.
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The organization of the graphs is the same as in section 2. Figures 4.3
through 4.5 show the density-state variables on the links in the order that
the links appear in the corridor. Figures 4.6 through 4.8 show the velocity-
state variables on the links in the same order. The graph of the controls

appears in figure 4.9.

We can see immediately that the qualitative behavior of the state variables
on all the links is very much the same as in the centralized solution. The
estimates also behave the same as they do in the centralized solution. Thus,
the numerical results (table 4.3) are virtually indistinguishable from the

centralized solution.

There are two differences, however, in the behavior of the two solutions,
and the differences are much what we may expect. First, let us study the
graph of the controls (figure 4.9). Although the curve for the first control
(controller A) is almost identical to the first control of the centralized
solution (figure 2.13), the magnitude of the control is approximately 20 percent
less in the decentralized solution. The second control (controller B) behaves
quite differently from the centralized solution. 1In the centralized solution,
control 2 achieves its maximum value at the end of the flow pulse (t=52 seconds),
and remains near that value until the system has almost recovered. 1In the
decentralized solution, the control builds slowly to its maximum value (at t=140
seconds), and from then until the end of the experiment, is slightly greater

than the centralized control.

The reasons for the behavior of the decentralized control are straight-
forward. The only knowledge that the second control has of the flow pulse is
the effect on the density and velocity of links 5 and 6. Thus, it cannot anti-
cipate the impact of the disturbance as control 2 of the centralized solution
did. By the time it reaches its maximum value, the density on link 5 is greater
and the velocity on link 5 lower than they are in the centralized solution (see
figures 2.9, 2.12, 4.5, and 4.8), which requires control 2 to exert more energy

than in the centralized solution.

Control 1 appears to be more conservative in the decentralized solution

than in the centralized solution. The magnitudes of the elements of the
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Table 4.3

COMPARISON OF CENTRALIZED AND DECENTRALIZED SOLUTIONS FOR
SAMPLE CORRIDOR

Statistical Covariance
Estimated State Percent
Centralized Decentralized Degradation
Density Link 1 (pl) 1.60 1.67 4.4
Velocity Link 1 (Vl) 0.0362 0.0309 ~14.6
Density Link 2 (p2) 1.75 1.80 2.9
Velocity Link 2 (v2) 0.901 1.21 34.3
Density Link 3 (p3) 1.70 1.63 -4.1
Velocity Link 3 (v3) 0.0313 0.0288 -8.0
Density Link 4 (p4) 0.937 0.988 5.4
Velocity Link 4 (v4) 0.618 0.794 28.5
Density Link 5 (p5) 1.51 1.49 -1.3
Velocity Link 5 (v5) 0.0444 0.0472 6.3
Density Link 6 (p6) 1.89 1.92 1.6
Velocity Link 6 (V6) 0.495 0.451 -8.9
cosT (3)*
OPEN LOOP 5.15582x10° 5.15582x10° 0
CLOSED LOOP 4.74092x10° 4.75457x10° 0.288
T-1
*See section 2.4: J = 2;% {[Ejt)—gol'§1[§jt)—§0]+[gjt)-20]'§2[gﬂt)-20]}-
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feedback-gain matrix for controller A are smaller than the corresponding
elements in the centralized solutions. Also, errors in the states of con-
troller B do not contribute to control 1 as they do in the centralized solution.
These two facts explain the the lower-control energy that is applied in the
decentralized solution. Control 1 can still anticipate the effect of the flow
pulse in the decentralized solution, and thus, it behaves qualitatively in the

same manner as in the centralized solution.

In spite of the differences in the actions of the controls, the quantita-
tive behavior of the state variables is almost the same for the decentralized
solution as for the centralized solution. Generally, the densities on the main
freeway are slightly higher and the velocities slightly lower for the decen-
tralized solution. Consequently, the densities on the secondary freeway are
slightly lower and the velocities higher for the decentralized solution. Also,
the disruption of flow on link 6 is delayed for the decentralized solution.

This is a direct consequence of behavior of control 2.

An interesting comparison between the centralized and decentralized solu-
tions can be made with the flows versus density graphs in figure 4.10. Figure
4.10 is an enlarged duplicate of figure 2.15 with the operating point of the
decentralized controller added. We can see that the decentralized controller
tries to use the unused capacity of the secondary freeway just as the decentral-
ized controller does. It is not quite as successful in this attempt, but does

well enough that the statistical costs for both solutions are close.

In concluding this section, we note that the situation we have given the
controller is not a simple one. The input flow during the pulse is more than
twice the capacity of the main freeway. During the disturbance on the freeway,
the state deviations are large enough to invalidate the assumption of linearity.

Yet, the control system still works well.
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5. CONCLUSIONS

The objective of this report is to develop and evaluate a systematic
approach to the design of a suboptimal decentralized control system, and to
apply the approach to a freeway corridor. The results of section 4 indicate
that the control system designed by the method presented in section 3 has worked
well for the traffic model that has been used. A brief summary of the philo-
sophy leading to the design method is given in the next few paragraphs.

The approach that is used to develop the design method has consisted of
two parts. In the first part, a centralized solution has been developed using
the LOG regulator approach. To use the LOG method, several assumptions have
to be made concerning the properties of the system. Although the development
of the control system indicated that some of the assumptions were not satisfied,
the control system worked well for the particular traffic model used, as was

seen in the example of section 2.4.

The centralized LQG control system design has two important desirable

properties:

(a) The feedback law is linear, which makes compuation of the control

from the estimate easy.

(b) The estimator structure is logical and is composed of two parts. The
first part propagates the estimate with the system dynamics. The second part is
an appropriately weighted feedback of the difference between the true and the

expected measurements.
The implemented centralized solution also has two undesirable properties:

(1) The filter gain must be computed on-line (because of the use of the

extended Kalman filter).

(2) All the measurements must be available to the central processor,

necessitating a prohibitive amount of communication.

In formulating the design approach for the decentralized controller, we
have tried to keep the desirable properties, eliminate the undesirable properties,

and still retain as much as possible the performance of the centralized solution.
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To do this, we have fixed the filter and feedback law to be linear, preset the
decentralized structure of the system, and restricted the quantities communicated
between controllers only to the most important estimates. We are then able

to formulate the problem as a constrained static minimization.

The results of section 4 have indicated that this method of decentralized
control design works well for the sample freeway corridor, assuming that the
freeway model is valid. The design also needs to be tested for other situations

(such as high~density conditions, high-noise levels, etc.).

The method of solution of the constrained static minimization problem needs
to be improved. The sample corridor with 12 state variables and 12 estimates
caused the storage of the static minimization to approach practical system
limits. The problem is caused by the size of the Lyapunov equation which has to

be solved repeatedly.

There are several possible ways to approach this problem. The most obvious,
and the most researched, approach is to find an alternative to the direct method
for solving the Lyapunov equation. As seen in section 3.3, most of the methods
developed to date cannot take advantage of the sparsity of the system matrix,
or the repeated substitution of the driving matrix with the same system matrix.

The remainder suffer from numerical accuracy problems.

Another approach may be to solve the problem for many smaller ones, and
then, to connect the results to obtain the overall solution. This approach may
work well for the freeway-corridor problem. The corridor can be first decom-
posed into its decentralized structure. The controllers can be taken in groups
of three starting with the beginning of the corridor. Each time a group of
them is solved, the solution for the middle controller is kept. The middle con-
troller then becomes the first controller of the next group, the last controller
becomes the middle controller, and the next controller in the corridor is added
to form the next group of three. This procedure is continued until the
the corridor is reached, and may be iterated. Questions concerning convergence
and performance of the resulting solutions need to be considered before it can

be used.
A third approach to increasing the size of the problem which can be handled
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by the method of section 3.3 may be to assume that the separation principle
holds. The filter and control gains may be calculated independently, thus

reducing the dimension of the Lyapunov equation to be solved by one-half.

As a final remark, we emphasize that all the results obtained for the
sample freeway corridor are only as valid as the model. The literature has
shown that the qualitative behavior of this model agrees with the physical
behavior of freeways, but the model has only been validated in limited real-
life situations. Until further study is done, the model's validity, and thus
the validity of the decentralized control system which implicitly assumes the

accuracy of the model, is open to question.

With this qualification in mind, we can examine the contribution of this
report more closely. The method used to design a decentralized control system
is not affected by the model; only the resulting design is. Thus, this method
can be applied to many systems for which accurate models are available, and the
resulting design will work for the original system. When a valid freeway model
is developed (or the present model is verified), the same design method can be

used.
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APPENDIX A: DIRECT METHOD FOR SOLVING LYAPUNOV EQUATIONS

The matrix Lyapunov equation:
AL+LA +Q=0, (A.1)

is actually a set of n(n+l)/2 independent linear equations (assuming that A is
non-singular, and that no two poles are symmetric about the origin) in the same
number of unknowns. There are several systematic methods (see Chen and Shieh
[1968] and Bingulac [1970]) for writing the linear system of equations from
equation (A.l). The method we will use is a modified version of the method

proposed by Chen and Shieh.

By using this method, equation (A.l) can be written as:

AL =-Q. (n.2)
where:

Z\: = expanded version of 3,

Ev = n(n+l)/2 vector consisting of the upper-triangular-half

of I stored row-wise,

n(n+l)/2 vector consisting of the upper-triangular-half of Q

2,

stored row-wise.

There are many ways to solve equation (A.2) (see Moler and Forsythe [1967]).

The most effective method for many situations is the L-U decomposition method.

From linear algebra, we know that any square nxn matrix A can be written

as:
A=LU, (3.3)

where:

I
"

= nxn lower triangular matrix with 1's along the diagonal.

ic
|

= nxn upper triangular matrix .
Substituting (A.3) into the linear equation:
AX=Dbh, (r.4)

we get:



LUXx-=h. (A.5)
Let:

Ux=%. (A.6)
Substituting (A.6) in (A.5) gives the equation:

Ly-=hb. (A.7)

The pair of equations (A.6) and (A.7) can easily be solved since L in
lower triangular equation (A.7) can be solved for y by using forxrward substitu-
tion. Then, equation (A.6) can be solved for x using back substitution since
U is upper triangular. The total number of operations involved in the L-U
decomposition is about n3, while n2 operations are needed for the forward and

back substitutions.

Applying this method to solve equation (A.2) results in approximately n6
operations for the L-U decomposition and n4 for the substitution because the
matrix g:is [n(n+l)/2] x [n(n+l)/2]. The number of operations can be reduced
considerably by taking advantage of the sparsity properties of z:to eliminate
multiplications involving zeroes. We have found empirically that for the
12-state freeway-corridor problem the L-U decomposition is on the order of n4

operations rather than n6.
The actual algorithm for solving equation (A.2) is designed to

(a2) use an optimal ordering algorithm to determine the optimal order
for processing the rows and columns of z; This is done only once if the loca-

tion of the non-zero elements of z:remains unchanged,

(b) perform the L-U decomposition symbolically: i.e., to determine
the positions of the non-zero elements in L and U. Again, this step is performe

only once if the locations of the non-zero elements of E:remain unchanged,

(c) perform the L-U decomposition numerically. This step is repeate:

every time the non-zero elements of E_change their values,

(d) use forward and back substitutions to solve gv' This step is th

only step that needs to be executed if only Qv changes.



APPENDIX B:

LINEARIZED SYSTEM AND CENTRALIZED GAIN MATRICES

n)=uel
Lo=d(9°t=- n,=~Udeo°n-

M BV S A
["] [V ]
() B
(] Fhd]
[oie} ¢
[T} v'e
bu=GLE" L~ b Y]
TO=Abo b= Tu-U9C k-
(A} v
[} (K]
0°) bI=UyP° T~
J2°¢C 0°
G°C 2°2
v'o )
[ ] 0°)
0°0 %0
u'l 3°9
[’ ] o'y

Lu=LYE L~ B)-0LL Y= ru=T9L°N

9¢=09L°Z~ £0=UBS"1

.
(%]
.

oot or
v o 0 0

€ O¢C LOe
[ AN IR -0 o o)

(] 0

0%y 3
weds€° T~ 0
TI=uTL° o= ZG-uY,
0°2 0

v'e v

(°v Tu=ayl
J

[

9

J

v

w0 -0be N

(SR N R S8 g

20-090°¢
20-GLo "4
[ Y]
0°0

0-GLE°T~ L0=0Q9]°Z
Z0-310°L~ Z0-G92°¢E~

0°0
2°0
o2
0°v
v
60

tu=ann’i~
bU=UZT1°y
r“o
Zo=Qui°t~-
20=-d9%°L
v
(3]
Z0=-36b °b=
nG-308°6
(3]
9°2

00-0LYy *u- 10-0Z6°L
Bl-LL6°C~ EC=G2Y°E~ W0=-G1%°E-

[
3%
20-089° Y-
’oouume
u
u
rennn‘.rt
v0=AoE°o
c°e
30
80-090°:
S0-09L*9

£6-aL9°L
€3-us2°s

n°¢ G*d
(] ¢*
J2eQCC°S ¢°0
(" o°C
v°0 J°0
L9 [ ]
(] BV 0°)
20=-a9.o°¢ Q"¢ b )
€*0 TO-G9C°c [A]
U*d T0-dZL°w L-G¥0°E
0°0 3°0
(3] [ Y]
€*0  Mo-QLE"ZT- TC-UYI)°y
€°0 20-QZL°%~ Z(-092°€-
rcocwo.no 0°¢C 2°0
] €0 ¢
o 0 0°0 Cou-u90°S-
G°0 [ Y 2°0

Zi-GoL "L~
ZC-Gys°)
P
v°o
W=uyL°S-
Lu=QL0°S
0°d
co
¢ =0iZ°0~
Z0-ant°t
v

A%y

B XIdiNe RIVY AV

s(-asL°8
nC-GCL N

5% XIsi¥m NIWY

('.
%0
Lv=dLb®s=
t0-0st °6
c°)
[}
22-0¢u 'L~
L=aeb°S
«'v
UQ‘
v=GYL°L-
20-asl°i

80-0¢c"2
a¢=-dho L~

8l=-GL5°€E~ ()
83-3CY°6 e
4t nu=13B°CE~
¢y al=29L°9
[ Rl VI R A [Se-]
PR3 TRAY €
2°C tl-ClYe
J°0 Zo=3dd°%
¢s=Qtu°Z~ v 0
su=3f4 °C o %
: Co=dil k=
J° Bu=dS°s
Y3 QaChZiXi TVkad
n.-025°% 1.-19:°9
n.=GZb") t{-Gt°"T

2I¥Fuise 2V3IRIT

:°F XISIVE KDiLVAaeSHD

(A" 40 2°9
344 0 o
%9 J3°2 o
6°C 6% it
Utd NJeGu0° L 247
(5] i vec
w2
LAYz T~
s
30T
3°9
3%
¢
272
¢ec
o°c
2°0
o3
:°C L1E1Vk LO4EI
%0 v e .
°C vy 6°¢
d°U oy 3°
0°0 )3 %0
20-a90°¢ 9y [
T0-d1)°L  Zu-090°t 2°C
v ) <I)=Gyu°t
0°9 L0 Zo-aZUcn
10-Q00°Z~ Lu=050°C 2°3
Z0-010° 4= ZC-ug0° L~ 00
36 9°0  s0=u00°2~
u.o Joy  Zi-02i°e-
3°7 1idluh Kal3AS

3
3
[
2
L]
*Z-
°)
°Z
0
J
2
2

w)els

Jrel3

"o r l:f‘ (.'N(-r et
.

JaZISYERIT

« s 8 ¢ oo
"0"'!‘:('01.“-’00

Te-u9

vr"«'b Cmene M

22=-093°S
c0~CYd "k~

QaZIiVakIl

B-1/B-2






DECENTRALIZED GAIN MATRICES
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APPENDIX D: REPORT OF INVENTIONS

This report represents a breakthrough in the development of a theory for
a decentralized control strategy applicable to a large-scale transportation

network.

However, there are no inventions or other patentable items.

100 copies D-1/D-2
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